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Modelling and testing for
comparisons



Revisiting Case study 1  Pest resistance maize
The experiment compared abundance of spiders
and thrips on Bt variety to the abundance of those
on isogenic control variety.

Would you say that the abundance of spiders
and/or thrips are comparable between Bt variety
and isogenic variety?
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Two-sample parametric tests: -test (thrips)
Assumes the two samples are independent and
from the  and , respectively.

Assuming , then 

A  con�dence interval for  is
given as  such that:

If , consistent with .
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with(
  gathmann.bt,
  t.test(thysan[gen == "ISO"],
    thysan[gen == "Bt"],
    alternative = "two.sided",
    var.equal = TRUE,
    conf.level = 0.95
  )
)

## 
##     Two Sample t-test
## 
## data:  thysan[gen == "ISO"] and thysan[gen == "Bt"]
## t = -3.2182, df = 14, p-value = 0.006192
## alternative hypothesis: true difference in means is not e
## 95 percent confidence interval:
##  -9.248813 -1.851187
## sample estimates:
## mean of x mean of y 
##     8.725    14.275

Note signi�cance test suggested is different in Achim Gathmann et al. (2006) “Impact of Bt Maize Pollen (MON810) on Lepidopteran Larvae Living on Accompanying Weeds.” Molecular Ecology
15: 2677–85. 4/16
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Con�dence interval for two sample difference
In the right, a 95% con�dence interval for
population mean difference is constructed
repeatedly, assuming population mean difference
is Normally distributed, from 100 samples of the
same population.

The population mean is zero.

Each con�dence interval is calculated as

where  is  such that

− ± × SE( − )X̄ Ȳ tn−2,0.975 X̄ Ȳ

tn−2,0.975 t∗

P( < ) = 0.975.tn−2 t∗
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Two sample non-parametric tests

Wilcoxon rank-sum test
Suppose that  and  are randomly selected
values from two populations.

vs.

All observations are ranked.

Test statistic is based on the sum of the ranks of
one group.

X Y

: P(X > Y) = P(X < Y)H0

: P(X > Y) ≠ P(X < Y)H1

with(
  gathmann.bt,
  wilcox.test(thysan[gen == "ISO"],
    thysan[gen == "Bt"],
    alternative = "two.sided",
    conf.int = TRUE,
    conf.level = 0.95
  )
)

## 
##     Wilcoxon rank sum exact test
## 
## data:  thysan[gen == "ISO"] and thysan[gen == "Bt"]
## W = 7, p-value = 0.006993
## alternative hypothesis: true location shift is not equal 
## 95 percent confidence interval:
##  -9.4 -2.4
## sample estimates:
## difference in location 
##                   -6.3
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Equivalence of tests to testing model parameters
##    gen thysan aranei
## 1   Bt   16.6   0.80
## 2   Bt   16.4   0.80
## 3   Bt   11.0   0.60
## 4   Bt   16.8   0.40
## 5   Bt   10.6   0.60
## 6   Bt   18.4   0.80
## 7   Bt   14.2   0.00
## 8   Bt   10.2   0.60
## 9  ISO    6.2   0.75
## 10 ISO   10.0   0.20
## 11 ISO   11.8   1.00
## 12 ISO   15.6   0.80
## 13 ISO    7.6   0.00
## 14 ISO    7.4   0.00
## 15 ISO    7.2   0.60
## 16 ISO    4.0   0.40

where .

The least squares estimate for 

lm(thysan ~ gen, data = gathmann.bt) %>%
  confint("genISO", level = 0.95)

##            2.5 %    97.5 %
## genISO -9.248813 -1.851187

Notice that the above con�dence interval is the same con�dence
interval from the -test!

= + ( = ) +i β0 β1 i ei

∼ NID(0, )ei σ2

= − .β1 X̄ Ȳ

t
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Revisiting Case study 4  Weight gain of calves Part 1/3

67 calves born in 1975 across 11 herds are fed of one of three diets with low, medium or high energy with
their initial and �nal weights recorded.
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Revisiting Case study 4  Weight gain of calves Part 2/3

Modelling the response as weight gain with diet
factor:

coef(lm((weight2 - weight1) ~ diet, data = u

## (Intercept)     dietLow  dietMedium 
##  332.666667   -4.666667  -33.971014

The herd is thought to be an important factor
contributing to the response.

Modelling the response as weight gain with diet
and herd factor:

# herd needs to be factor not integer
dat4 <- mutate(urquhart.feedlot, herdf = fac
coef(lm((weight2 - weight1) ~ herdf + diet, 

## (Intercept)      herdf9     herdf16     h
##  354.257353  -91.148529  -51.312039    7.4

Last model is the same as modelling the �nal
weight with the initial weight as a covariate with
slope �xed to 1:

coef(lm(weight2 ~ offset(weight1) + herdf +
data = dat4
))

## (Intercept)      herdf9     herdf16     
##  354.257353  -91.148529  -51.312039    7

Estimating slope for initial weight from the data:

coef(lm(weight2 ~ weight1 + herdf + diet,
data = dat4
))

## (Intercept)     weight1      herdf9     
##  200.440174    1.243238  -79.102111  -51
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Revisiting Case study 4  Weight gain of calves Part 3/3
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Case study 10  Soil nitrogen Part 1/3

Soil nitrogen content with 8 different fertilizer
treatment is measured at 3 growth stage:

P1 = 15 days post transplanting

P2 = 40 days post transplanting

P3 = panicle initiation

Clearly the growth stage affects the soil nitrogen
content but this makes it hard to compare the
fertilizer treatments.

Let's model the nitrogen content as:

lm(nitro ~ stage + trt, 
  data = gomez.nitrogen)
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Case study 10  Soil nitrogen Part 2/3

Considering just the stage effect:
fit1 <- lm(nitro ~ stage, data = gomez.nitrogen)
fit1data <- broom::augment(fit1) %>%
left_join(gomez.nitrogen, by = c("nitro", "stage")) %>%
mutate(trt = fct_reorder(trt, .resid))
ggplot(fit1data, aes(trt, .resid)) +
geom_boxplot() +
labs(
x = "Fertilizer treatment",
y = "Residual of fit1"
)

Here we expect no pattern:

fit2 <- lm(nitro ~ stage + trt,
  data = gomez.nitrogen
)
fit2data <- broom::augment(fit2) %>%
  mutate(trt = fct_reorder(trt, .resid))
ggplot(fit2data, aes(trt, .resid)) +
  geom_boxplot() +
  labs(
    x = "Fertilizer treatment",
    y = "Residual of fit2"
  )
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Case study 10  Soil nitrogen Part 3/3

library(emmeans)
confint(pairs(emmeans(fit2, "trt"), adjust = "none"))

##  contrast estimate    SE df lower.CL  upper.CL
##  T1 - T2   -0.2117 0.116 86  -0.4420  0.018654
##  T1 - T3   -0.3375 0.116 86  -0.5678 -0.107180
##  T1 - T4   -0.2308 0.116 86  -0.4612 -0.000513
##  T1 - T5   -0.0717 0.116 86  -0.3020  0.158654
##  T1 - T6   -0.1492 0.116 86  -0.3795  0.081154
##  T1 - T7   -0.3592 0.116 86  -0.5895 -0.128846
##  T1 - T8   -0.2333 0.116 86  -0.4637 -0.003013
##  T2 - T3   -0.1258 0.116 86  -0.3562  0.104487
##  T2 - T4   -0.0192 0.116 86  -0.2495  0.211154
##  T2 - T5    0.1400 0.116 86  -0.0903  0.370320
##  T2 - T6    0.0625 0.116 86  -0.1678  0.292820
##  T2 - T7   -0.1475 0.116 86  -0.3778  0.082820

From above, the 6 pairs of treatments: T3 & T5, T1 & T4, T1 &
T8, T6 & T7, T1 & T3, T1 & T7 are signi�cantly different.

These con�dence intervals are constructed without taking
any regard for others.

scroll 
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Controlling the family-wise error rate
Unadjusted

Each interval has been constructed using a
procedure so that when the model is correct, the
probability that the "correct" population contrast is
covered is 0.95. . . individually.

where  and  is the number of treatments.

But, what is the probability that all intervals cover
their corresponding true values simultaneously?

Bonferroni adjustment

We can adjust the individual 
con�dence intervals so

where  is the number of pairwise comparisons.

So for 8 treatments, the number of pairwise
comparisons is

choose(8, 2)

## [1] 28

− ± × SE( − )X̄ Ȳ tn−t,1−α/2 X̄ Ȳ

α = 0.05 t

100(1 − α)%

− ± × SE( − )X̄ Ȳ tn−t,1−α/(2m) X̄ Ȳ

m
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Bonferroni adjusted con�dence interval
confint(pairs(emmeans(fit2, "trt"),
  adjust = "bonferroni"
))

##  contrast estimate    SE df lower.CL upper.CL
##  T1 - T2   -0.2117 0.116 86   -0.585   0.1619
##  T1 - T3   -0.3375 0.116 86   -0.711   0.0361
##  T1 - T4   -0.2308 0.116 86   -0.604   0.1427
##  T1 - T5   -0.0717 0.116 86   -0.445   0.3019
##  T1 - T6   -0.1492 0.116 86   -0.523   0.2244
##  T1 - T7   -0.3592 0.116 86   -0.733   0.0144
##  T1 - T8   -0.2333 0.116 86   -0.607   0.1402
##  T2 - T3   -0.1258 0.116 86   -0.499   0.2477
##  T2 - T4   -0.0192 0.116 86   -0.393   0.3544
##  T2 - T5    0.1400 0.116 86   -0.234   0.5136
##  T2 - T6    0.0625 0.116 86   -0.311   0.4361
##  T2 - T7   -0.1475 0.116 86   -0.521   0.2261

Now none are signi�cantly different.

Note: Bonferroni adjustment is quite conservative.
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