
ETC5521: Exploratory Data Analysis

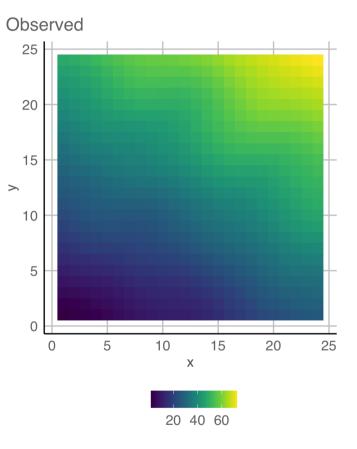
Exploring data having a space and time context

Lecturer: Di Cook

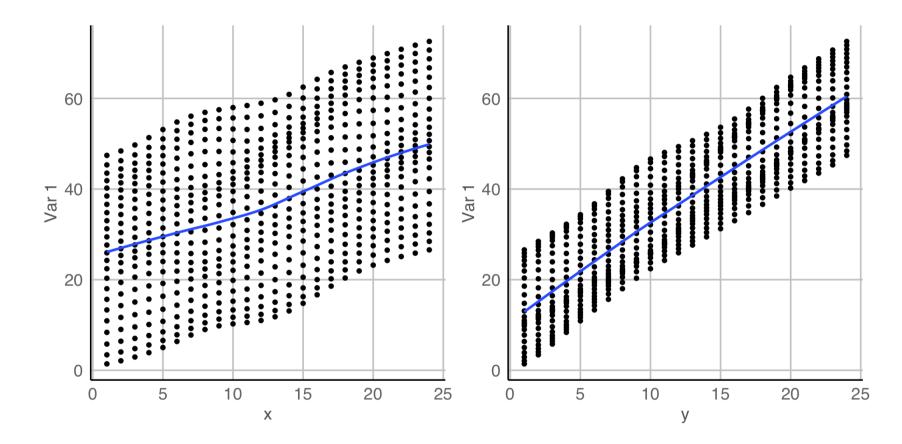
ETC5521.Clayton-x@monash.edu

Week 10 - Session 2

Spatial data

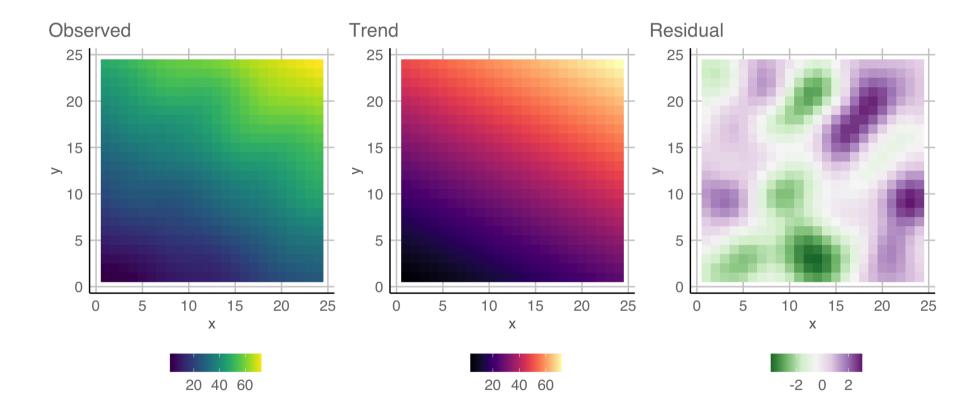

Spatial components

i)


Spatial data can be considered to have both trend and error.

Trend purely on spatial coordinates: expect northsouth trend in latitude (position of sun during the year), and possibly east-west in longitude (earth rotation). Trend might be more complicated, localised ecosystems, or related to other factors like elevation.

After trend is removed, the residuals (error) are likely to have spatial dependence: closer sites are likely to have similar values.



Check trend in longitude and latitude

There is a trend in both directions, but it is stronger in the y (north-south) direction.

Trend + error

Observed have trend + error. Note the apparent clustering in residuals is strong spatial dependence.

A flash back to the 1970s: Tukey's median polish

This is a useful data scratching technique, particularly for spatial data, to remove complicated trends.

Median polish technique

- 1. Compute row medians, and the median of the row medians, called **row overall effect**.
- 2. Subtract each element in a row by its row median.
- 3. Subtract the row overall effect from each row median.
- 4. Do the same columns. Add the column overall effect to row overall effect.
- 5. Repeat 1-4 until negligible change occur with row or column medians.

Median polish technique

 10
 8
 6
 4
 2
 6
 2
 4
 2
 0
 -2
 -4

 8
 6
 4
 2
 4
 10
 4
 2
 0
 -2
 -4
 10 8 6 4 2
 6
 4
 2
 4
 6
 4
 0
 2
 0
 -2
 0
 2

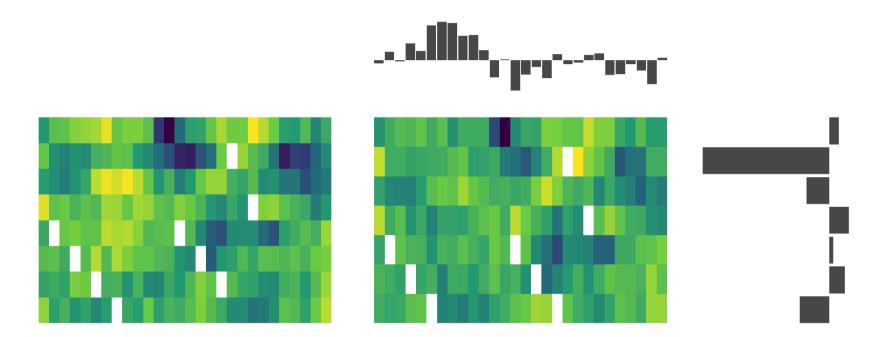
 4
 2
 6
 8
 8
 4
 0
 0
 -2
 0
 2
 2 4 6 8 10 6 2 - 4 - 2 0 2 4 20002 4 220-2-6 220-2-2 0 0 2-0 0 -2-2022 -6-202 2

check calculations x <- matrix(c(10, 8, 6, 4, 2,8, 6, 4, 2, 4, 6, 4, 2, 4, 6, 4, 2, 4, 6, 8, 2, 4, 6, 8, 10), nrow=5, byrow=T) medpolish(x, maxiter = 1) ## 1: 42 ## ## Median Polish Results (Dataset: "x ## ## Overall: 4

Median polish technique

```
medpolish(x, maxiter = 5)
## 1: 42
## Final: 42
##
## Median Polish Results (Dataset: "x
##
## Overall: 4
##
## Row Effects:
  [1] 2 0 0 0 2
##
##
  Column Effects:
##
## [1] 2 0 0 0 2
```

Median polish is effectively fitting a model of this form:


overall effect + row effect + column effect which can be written as:

 $y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}$

Nice explanation by Manny Gimond

plot R

This is the Baker field data that we have seen before. The heatmap shows corn yield in a farm field in Iowa. High values are yellow and low values are dark blue.

The right-side heatmap shows the residuals from median polish, and the row and column marginal effects. After a median polish, the values should look randomly distributed. 10/26

Spatial data needs maps

Maps provide a familiar framework for spatial coordinates. For data analysis, you want fast to draw maps, not detailed maps. The important information from maps can be delivered with polygons.

Spatial polygon data

Show 10 🗸 entries

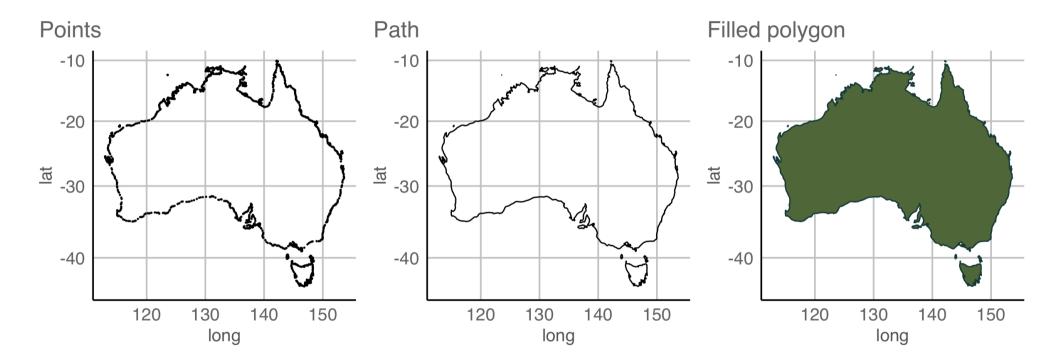
Search:

	long	lat 🔶	group 🔷	order 🔷	region	۲	subregion	•
1	123.5945281982422	-12.42568302154541	133	7115	Australia		Ashmore and Cartier Islands	
2	123.5952072143555	-12.43593692779541	133	7116	Australia		Ashmore and Cartier Islands	
3	123.5731506347656	-12.43418025970459	133	7117	Australia		Ashmore and Cartier Islands	
4	123.5724639892578	-12.42392539978027	133	7118	Australia		Ashmore and Cartier Islands	
5	123.5945281982422	-12.42568302154541	133	7119	Australia		Ashmore and Cartier Islands	
6	158.8787994384766	-54.70976257324219	139	7267	Australia		Macquarie Island	
7	158.84521484375	-54.74921798706055	139	7268	Australia		Macquarie Island	
8	158.8359375	-54.70400238037109	139	7269	Australia		Macquarie Island	
9	158.89697265625	-54.50605392456055	139	7270	Australia		Macquarie Island	
10	158.9588775634766	-54.47236251831055	139	7271	Australia		Macquarie Island	

Showing 1 to 10 of 2,579 entries

Previous 1

2


3

4

5 ... 258 Next

Spatial polygon data

plot R

Measured values (variables) associated with a spatial polygon.

sf: Simple spatial polygon objects in R

library(sf)

```
nc <- st_read(system.file("shape/nc.shp", package="sf"))</pre>
```

Reading layer `nc' from data source `/Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library/sf/shape/nc
Simple feature collection with 100 features and 14 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
Geodetic CRS: NAD27

nc %>% slice_head(n=5)

Simple feature collection with 5 features and 14 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -81.74107 ymin: 36.07282 xmax: -75.77316 ymax: 36.58965
Geodetic CRS: NAD27
AREA PERIMETER CNTY_ CNTY_ID NAME FIPS FIPSNO CRESS_ID BIR74 SID74 NWBIR74 BIR79 SID79 NWBIR79
1.0.1111

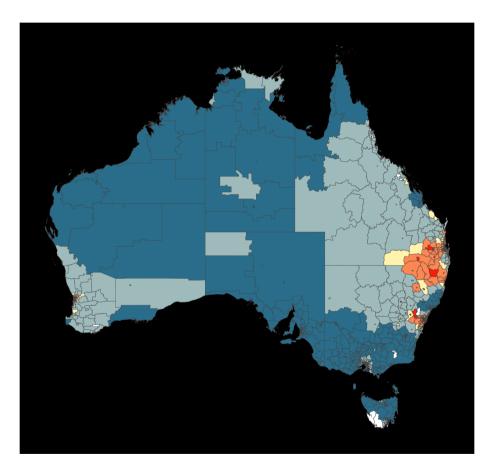
Like the cubble object but more strictly a map object. Has a coordinate system (projection), and bounding box. Supports technically accurate distance calculations between coordinates (on a sphere).

sf: Simple spatial polygon objects in R

nc_geom <- st_geometry(nc) nc_geom[[1]] %>% flatten()										
## [[1]]									
##	[,1]	[,2]								
## [1,] -81.47276	36.23436								
## [2,] -81.54084	36.27251								
<i>##</i> [3,] -81.56198	36.27359								
## [4,] -81.63306	36.34069								
## [5,] -81.74107	36.39178								
## [6,] -81.69828	36.47178								
## [7,] -81.70280	36.51934								
## [8,] -81.67000	36.58965								
## [9,] -81.34530	36.57286								
## [10,] -81.34754	36.53791								
## [11,] -81.32478	36.51368								
## [12,] -81.31332	36.48070								
## [13,] -81.26624	36.43721								
## [14,] -81.26284	36.40504								
## [15,] -81.24069	36.37942								
## [16,] -81.23989	36.36536								
## [17,] -81.26424	36.35241								

The geometry contains a list of spatial locations when connected in the right order can be used to draw the spatial polygon.

Choropleth maps and cartograms and hexagon tiles

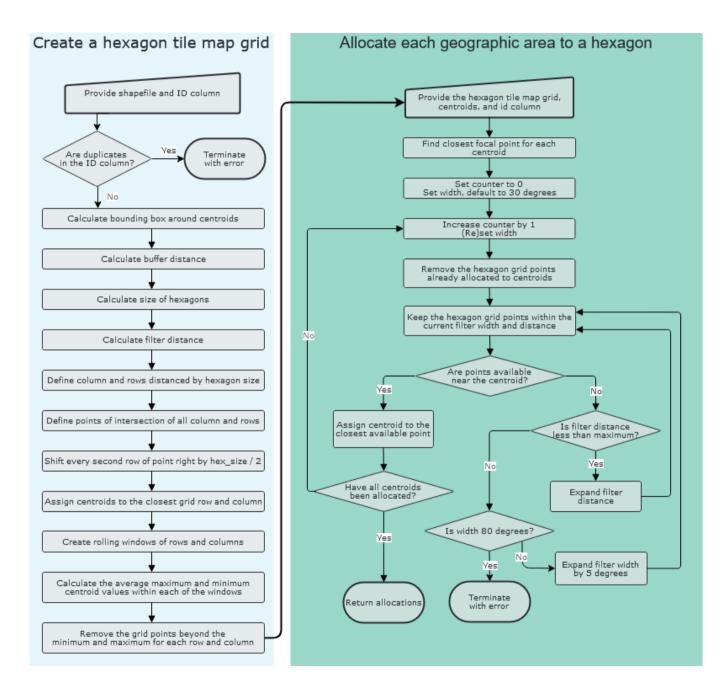

Case study 3 Thyroid cancer in women

plot learn R

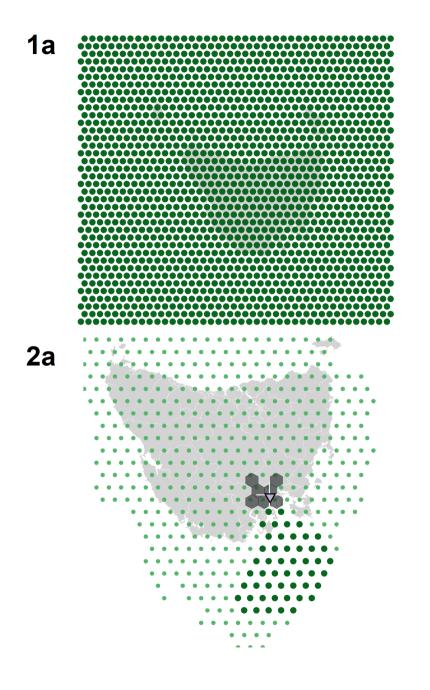
A choropleth map is used to show a measured variable associated with a political or geographic region. Polygons for the region are filled with colour.

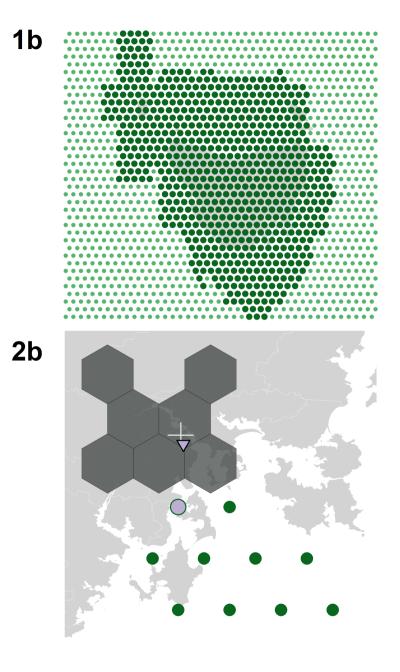
The purpose is to examine the spatial distribution of a variable.


The choropleth map at right shows thyroid cancer incidence for females across Australia, measured at an SA2 level. Red indicates higher incidence.

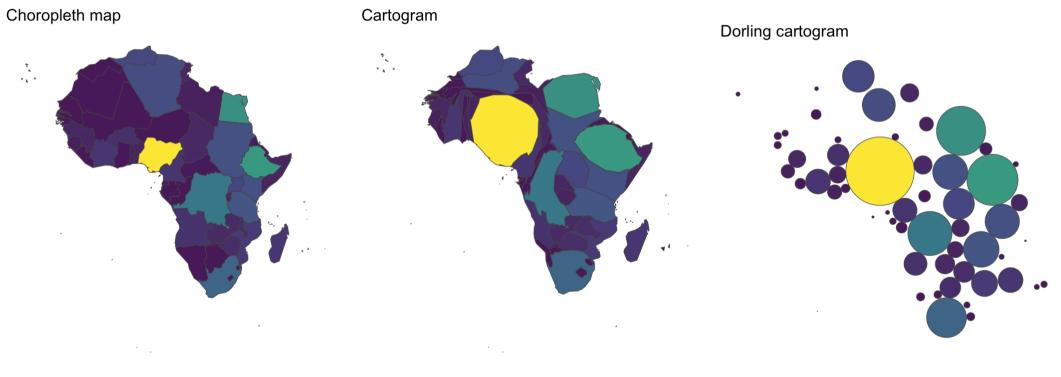


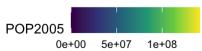
Case study 3 Thyroid cancer in women


plot learn R


A hexagon tile map represents every spatial polygon with an equal sized hexagon. In dense areas these will be tesselated, but separated hexagons are placed at centroids of the remote spatial regions.

19/26

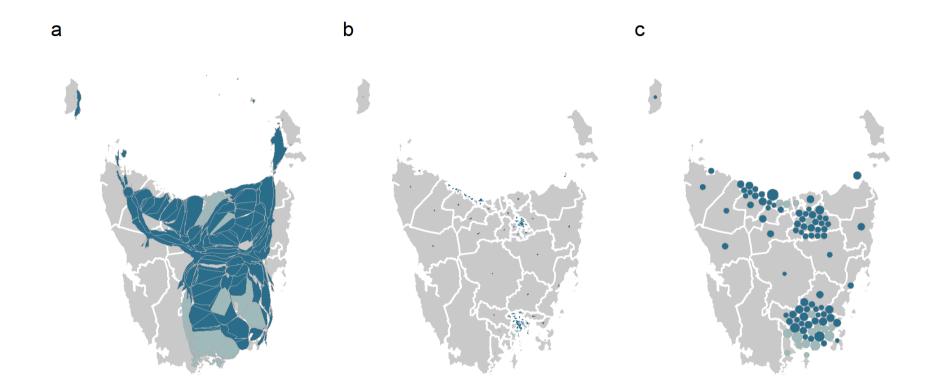



20/26

Cartograms

A cartogram transforms the geographic shape to match the value of a statistic. Its a useful exploratory technique for examining the spatial distribution of a measured variable.

plot R



Show 10 V entries									h:			
	FIPS	ISO2	ISO3 🔶	UN	NAME		POP2005 🔶				LAT	geometry
DZA	AG	DZ	DZA	12	Algeria	238174	32854159	2	15	2.632	28.163	[object Object
AGO	AO	AO	AGO	24	Angola	124670	16095214	2	17	17.544	-12.296	[object Object
BEN	BN	BJ	BEN	204	Benin	11062	8490301	2	11	2.469	10.541	[object Object
COG	CF	CG	COG	178	Congo	34150	3609851	2	17	15.986	-0.055	[object Object
COD	CG	CD	COD	180	Democratic Republic of the Congo	226705	58740547	2	17	23.654	-2.876	[object Object
BDI	BY	BI	BDI	108	Burundi	2568	7858791	2	14	29.887	-3.356	[object Objec
CMR	СМ	СМ	CMR	120	Cameroon	46540	17795149	2	17	12.277	5.133	[object Objec
TCD	CD	TD	TCD	148	Chad	125920	10145609	2	17	18.665	15.361	[object Object
COM	CN	KM	СОМ	174	Comoros	223	797902	2	14	43.337	-11.758	[object Object
CAF	СТ	CF	CAF	140	Central African Republic	62298	4191429	2	17	20.483	6.571	[object Object

Showing 1 to 10 of 57 entries

Previous 1 2

1 2 3 4 5 6 Next

Three different cartogram displays for Tasmania: (a) contiguous cartogram, (b) non-contiguous cartogram and (c) Dorling cartogram.

The cartogram algorithm can dramatically alter the geography, so that it is no longer recognisable. In the case of the whole of Australia, it simply does not converge.

https://go-cart.io/cartogram

Resources and Acknowledgement

- Wickham et al (2012) Glyph-maps for Visually Exploring Temporal Patterns in Climate Data and Models
- sf: Simple Features for R
- Hexmaps with sugarbag and documentation
- Making cartograms in R
- Gastner et al (2018) Fast flow-based algorithm for creating density-equalizing map projections
- Median polish on two way tables from Tukey, J. W. (1977). Exploratory Data Analysis, Reading Massachusetts: Addison-Wesley, see Manny Gimond's explanation.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Lecturer: Di Cook

ETC5521.Clayton-x@monash.edu

Heek 10 - Session 2

