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Models help focus on the structure
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Parametric regression



Parametric regression

o Parametric means that the researcher or analyst
assumes in advance that the data fits some type
of distribution (e.g. the normal distribution).

e E.g. one may assume that
i = Po+Pix + fb’zxiz + €,

where € ~ NID(0,0%) fori=1,...,n,
o red = to estimate
e blue = observed

« Because some type of distribution is assumed in
advance, parametric fitting can lead to fitting a
smooth curve that misrepresents the data.
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Simulating data from parametric models
o Say a model is
y=x>+e, e ~ N(0,2%).
e Then we have

y I x ~ N(x%,2%).
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Simulating data from parametric models

Say a model is
y=x>+e, e ~ N(0,2%).
Then we have

y I x ~ N(x%,2%).

Let's draw 200 observations from this model.
Suppose that x € (—10, 10) and that we have

uniform coverage over the support.

The response y is generated as per above
model.

set.seed(1)

df <- tibble(id = 1:200) %>%

mutate(x

Plotting this:

runif(n(), -10, 10),
x"2 + rnorm(n(), 6, 2))

y

ggplot(df, aes(x, y)) +
geom_point()

>

100

75

50

25

0

-10 -5 0 5 10

6/27



Logistic regression



Logistic regression

Not all parametric models assume Normally distributed errors nor continuous
responses.

Logistic regression models the relationship between a set of explanatory variables

(Xi1, . . .,Xik) and a set of binary outcomes Y; fori=1,...,n.

We assume that Y; ~ B(1,p;) = Bernoulli(p;) and the model is given by

logit(pi) = In < 1 Pi ) = [Z))() + ﬁ1X11+. .. +[31<Xik-

— Pi
Taking the exponential of both sides and rearranging we get

1
Pi = 1 4+ e=Bo+Byxi1+... 4B xix)

The function f(p) = In < IL ) is called the logit function, continuous with

range (—%, ), and if p is the probablity of an event, f (p) is the log of the odds.
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Representation of data for binary outcomes

Data:
mock_df

## # A tibble:

##
##
##
##
H#
##
##
##
##
H#
##
##
##
H#
##
##
##
##
H#
##

o NOoO ok WN =

N N (U WU G (U Q'
o NOoOoo A WN -2 OOV
O

Patient Smoker Sex

<fct>

0o NO ok WN =

—_ a4 a2 A
o NOo AAWN 2O

18 x 5
<fct> <fct>
Yes Female
Yes Male
No Female
Yes Male
Yes Female
No Female
Yes Female
No Female
No Female
No Male
Yes Male
Yes Female
Yes Male
Yes Female
No Male
No Female
No Male
No Male

Cancer CancerBinary

<fct> <dbl>
No 0
No 0
Yes 1
No 0
Yes 1
No 0
Yes 1
No 0
No 0
No 0
No 0
Yes 1
No 0
No 0
Yes 1
Yes 1
No 0
Yes 1

Summarised data:

mock_sumdf

##
##
##
##
##
##
##
##

# A tibble: 4 x 4

# Groups: Smoker [2]
Smoker Sex Cancer Total
<fct> <fct> <int> <int>

T No Female 2 5

2 No Male 2 4

3 Yes Female 3 5

4 Yes Male 0 4

The summarised data here give the same
information as the original data, except you lost
the patient number

Note the sample size, n, is larger than the number
of rows in the summarised data
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Logistic regression in R

o Fitting logistic regression models in R depend on the form of input data

glm(Cancer ~ Smoker + Sex,
family = binomial(link = "logit"),

##
##
##
H#
##
##
##
##
H#
##
##

data = mock_df)

Call: glm(formula = Cancer ~ Smoker + Sex, family = bi

data = mock_df)

Coefficients:
(Intercept)

SmokerYes

0.2517 -0.5034

Degrees of Freedom: 17 Total (i.e. Null);

Null Deviance:
Residual Deviance:

24 .06
22.61

SexMale
-1.1145

AIC: 28.61

15 Residual

glm(cbind(Cancer, Total - Cancer) ~ Smoker + Sex,
family = binomial(link = "logit"),

##

##
##
#H#
##
##
##
#HH#
#H#
##

data = mock_sumdf)

Call: glm(formula

Coefficients:
(Intercept)

= cbind(Cancer, Total - Cancer) ~ Smok
data = mock_sumdf)

SmokerYes

0.2517 -0.5034

Degrees of Freedom: 3 Total (i.e. Null);

Null Deviance:
Residual Deviance:

5.052
3.604

SexMale
-1.1145

AIC:

15.82

1 Residual

10/27



Simulating from a logistic regression model part1

o Let's suppose that the probability of
having cancer are the following:

e 0.075 for women smokers

e 0.045 for men smokers

e 0.005 for women non-smokers
e 0.003 for men non-smokers

o We'll sample 500 people for each
group

« Remember that under the logistic

regression model, we assumed that
Yi ~ B(1,pi)

df <- tibble(id
mutate(Smoker

df %>%

rowwise() %>%
mutate(CancerBinary =
case_when(Smoker=="Yes" & Sex=="Female" ~ rbinom(1, 1, 0.075)
Smoker=="Yes" & Sex=="Male" ~ rbinom(1, 1, ©0.045),
Smoker=="No" & Sex=="Female" ~ rbinom(1, 1, ©.005),
Smoker=="No" & Sex=="Male" ~ rbinom(1, 1, 0.063)),
ifelse(CancerBinary,

Ca

ncer =

1:2000) %>%

rep(c("Yes",
Sex = rep(c("Female",

filter(Cancer=="Yes")

## # A tibble: 53
## # Rowwise:
Smoker Sex

it
it
##
##
##
it
##
##
##
##

EIANTA

> 00N O Ul WON =

id
<int>
27

32

47

83
129
136
149
218

N A

<chr>
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

\/ - o

x 5

<chr>
Female
Male
Female
Female
Female
Male
Female
Male

IR

CancerBinary
<int>
1

[ W W ¥ _— ) e A

"No"), each = n() / 2),
"Male"),

times = n() / 2)) %%

"Yes", "NO"))

Cancer
<chr>
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes 11/27

\/ - o



Simulating from a logistic regression model par>

e Attimes you may want to simulate the expand_grid(Smoker = c("Yes", "No"), Sex = c("Female", "Male")) %>%
! rowwise() %>%

summary data directly instead of the mutate(Cancer =
individual data case_when(Smoker=="Yes" & Sex=="Female" ~ rbinom(1, 500, 0.067
Smoker=="Yes" & Sex=="Male" ~ rbinom(1, 5060, ©.045)
o Recall that |fY1 —_ B(l’p) for Smoker=="No" & Sex=="Female" ~ rbinom(1, 560, ©.00:
. ) Smoker=="No" & Sex=="Male" ~ rbinom(1, 500, ©0.003))
1=1,...kand Yjs are independent, Total = 500)
## # A tibble: 4 x 4

S=Y +Y+...+Y ~ B(k,p) ## # Rowwise:

## Smoker Sex Cancer Total
## <chr> <chr> <int> <dbl>

## 1 Yes Female 815 500
## 2 Yes Male 23 500
## 3 No Female 0 500
## 4 No Male 3 500
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Menarche

e In 1965, the average age of 25 homogeneous groups of girls was recorded along with the number of girls
who have reached menarche out of the total in each group.

ul data R

1.00

Menarche/Total
o
(@)
o

10 12 14 16

Milicer, H. and Szczotka, F. (1966) Age at Menarche in Warsaw girls in 1965. Human Biology 38, 199-203.




Simulating data from a fitted logistic regression model rar

o Suppose we want to simulate from the fitted model

o We first fit the fitted model

fitl <-

glm(cbind(Menarche, Total - Menarche) ~ Age,

family = "binomial",
data = menarche)
(beta <- coef(fit1))

## (Intercept) Age
## -21.226395 1.631968

e The fitted regression model is given as:

logit(p}) = By + Py X -

e Rearranging we get

1

A

bi =

1+ e—(ﬁ;‘FﬁIXn) .

e Simulating from first principles:

menarche %>%

rowwise() %>%
mutate(
phat
simMenarche =

## # A tibble:
## # Rowwise:

##
##
##
i
i
##
##
i
i
H
##
## 10

O 0 NO o1 WON =

9.
10.
10.
10.
11.
11.
11.
11.
12.
12.
## # i 15 more rows

25 x 5

Age Total Menarche
<dbl> <dbl>

N
—

W = 000 W = 00O N

376
200
93
120
90
88
105
111
100
93

<dbl>

OO OO OO

1/(1 + exp(-(beta[1] + beta[2] * Age))),
rbinom(1, Total, phat))

phat simMenarche

<dbl> <int>
.00203 1
.0103 3
.0187 2
.0279 3
.0413 1
.0609 6
.0888 9
.128 12
.181 17
.249 23
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Simulating data from a fitted logistic regression model a2

o An easier way to do this is to use the simulate function which works for many model objects in R

« Below it's simulating 3 sets of responses (i.e. counts of "success" and "failure" events) from fit1 logistic

model object

simulate(fit1, nsim

i
#i#
#i#
Hi#
i
##
it
#it
i
i
#i#t
#i#
i
i

o NOoO o WN =

—_ A A O
WN -

sim_1.Menarche sim_1.V2 sim_2.Menarche sim_2.V2 sim_3.Menarche sim_3.V2

376
198
89
116
82
82
91
98
79
68
53
71
52

0
1
0
2
S)
3

7
14
18
21
32
43
o4

376
199
93
118
85
85
08
97
82
72
68
65
45

376
200
90
114
87
82
100
95
80
66
67
67
40
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Diagnostics for logistic regression models

« One diagnostic is to compare the observed and expected proportions under the logistic regression fit.

df1 <- menarche %>%
mutate(
pexp = 1/(1 + exp(-(beta[1] + beta[2] * Age))),
pobs = Menarche / Total)

o o o -
\S) ) ~ o
&) o o S

Expected proportion

o
o
S

0.00 0.25 0.50 0.75 1.00
Observed proportion
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Diagnostics for logistic regression models

o Goodness-of-fit type test is used commonly to assess the fit as well.

e E.g. Hosmer—-Lemeshow test, where test statistic is given as

1 - 2 <(011 —Ejp)? N (Ooi — Eog)? >
i=1

Eii Eoi

where O1; (E1i) and Og; (Eoj) are observed (expected) frequencies for successful and non-successful events for group 1, respectively.

vcdExtra: :HLtest(fit1)

## Hosmer and Lemeshow Goodness-of-Fit Test

Hi

## Call:

## glm(formula = cbind(Menarche, Total - Menarche) ~ Age, family = "binomial",
#it data = menarche)

## ChiSquare df P_value

## 0.1088745 8 0.9999996
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Diagnostics for linear models



Assumptions for linear models
Fori € {1,...,n},
Y = o + Pixit+. . . +PxXik + €,
where € ~ NID(0, 0?) or in matrix format,

Y=Xf+e, ¢~N(0,0°L,)

where

B =Po,.... B,
e=(€,..., €,) ", and
e X = [ln X ... xk]‘, where

This means that we assume
1.E(g) =0for1 €{1,...,n}.

2.€,...,€, are independent.

3. Var(g) = o fori € {1,...,n} (i.e.

homogeneity).
4.€,...,€, are normally distributed.

So how do we check it?
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Model diagnostics for linear models

Plot Y, vs X; to see if there is = a linear relationship A boxplot of the residuals R; to check for

between Y and Xx. symmetry.

3
o,
e 2 0
§i3 o -1
80 “

5 0 5
log(Body) (kg)

To check the homoscedasticity assumption, plot R; A normal Q-Q plot, i.e. a plot of the ordered
vs X;. There should be no obvious patterns. residuals vs @' (

1
=)

Residual
N2 O =MW
-

X4
[ )

[ ]

[ )
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Assessing (A1) E(g;)) =0for1=1,... ,n

e Itis a property of the least squares method that

i Ri = 0, SO Ri
i=1

forRi = Y, — Y;, hence (A1) will always appear valid "overall".

0

« Trend in residual versus fitted values or covariate can indicate "local" failure of (A1).

« What do you conclude from the following plots?

)
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N—"

Residual
© o o
(@)} O O

0.00 0.25 0.50 0.75 1.00
Fitted Values

N
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" 2 ° ° *
w P 2" " ....Q\o
O O - e® o 0_9' e ° %’
. 00.. o 0.‘.. ". -.o o
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°

.
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.

0.00 0.25 0.50 0.75 1.00
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Assessing (A2)-(A3)
(A2) €, ... , €, are independent

randomly scattered about zero if plotted
against fitted values or covariate.

« Long sequences of positive residuals followed
by sequences of negative residuals in R; vs x;
plot suggests that the error terms are not

independent.
(1) (2) ,
—_— ° — .~ ° 'Y | L]
R ENIIEAR ERiE St e
5 OO T’::ﬁ.ﬁ*&_"_ D OO v es, . 0.~ ° ":e:—.‘\-'.—
e QIR F ORI £ e R R YK
_05 '05 o o L b b
0.00 0.25 0.50 0.75 1.00 0.190.200.21 0.22 0.23 0.24
Fitted Values Fitted Values

©

Residual

1.0
0.5
0.0

-0.5
-1.0

(A3) Var(g) = o2 fori=1,...,n

o If (A2) is correct, then residuals should appear o If (A3) holds then the spread of the residuals
should be roughly the same across the fitted
values or covariate.

0.00 0.25 0.50 0.75 1.00
Fitted Values
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Assessing (Ad) €, ... , €, are normally distributed
Q-Q Plots InR

 The function ggnorm(x) producesa fit <- Im(y ~ Xx)
Q-Q plot of the ordered vector x
against the quantiles of the normal
distribution. plot(gnorm((1:n) / (n + 1)), sort(resid(fit)))

e The n chosen normal quantiles

By "hand"

1, i By base
@™ (1) are easy to calculate but
ioti ot id(fit))
more sophisticated ways exist: ggnorm(resi
i 3 - qqline(resid(fit))
« —7 P 74 defaultinggnorm. . -
. L » 12 recommended by sl
Hyndman and Fan (1996). data.frame(residual = resid(fit)) %>%
ggplot(aes(sample = residual)) +

stat_qq() + stat_ggq_line(color="blue")

Reference: Hyndman and Fan (1996). Sample quantiles in statistical packages, American Statistician, 50, 361--365.



Examining simulated data

Simulation scheme

n <- 100
x <- seq(@, 1, length.out = n)
y1l <- x + rnorm(n) / 3 #
y2 <- 3 * (x - 8.5) " 2 +

c(rnorm(n / 2)/3, rnorm(n / 2)/6) #
y3 <- -0.25 * sin(20 * x - 0.2) +

X + rnorm(n) / 3 #

M1 <- 1Im(yl ~ x); M2 <- Im(y2 ~ x); M3 <-

Linear
Quadratic

Non-1linear

Im(y3 ~ x)

1.0

0.5

0.0

Residual

1.0

0.5

> 0.0

-1.0




Take away messages

A4 Parametric models assume some
distribution in advance

4 Logistic models can be used to model
explanatory variables with binary outcomes

A4 You should be able to simulate from
parametric models

4 You can perform basic model diagnostics

4 You can use simulation to analyse model
properties
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Resources and Acknowledgement

e These slides were originally created by Dr Emi Tanaka, and modified by Dr Michael Lydeamore.

Some of these slides were inspired by STAT3012 Applied Linear Models at The University of Sydney by
Prof Samuel Muller

Cook & Weisberg (1994) "An Introduction to Regression Graphics"

Data coding using tidyverse suite of R packages

Slides constructed with xaringan, remark.js, knitr, and R Markdown.
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