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Revisiting outliers

« We defined outliers in week 4 as "observations
that are significantly different from the majority"
when studying univariate variables.

o There is actually no hard and fast definition.

We can also define an outlier as a data point
that emanates from a different model than

do the rest of the data.

« Notice that this makes this definition dependent on
the model in question.
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Pop Quiz

Would you consider the yellow points below as outliers?




Outlying values

« As with simple linear regression the fitted model e
should not be used to predict Y values for x ° ° Pe
combinations that are well away from the set of 0 %
observed x; values. N °
[
_ p .
« This is not always easy to detect! * o
« Here, a point labelled P has x; and X, coordinates 5 '.’
well within their respective ranges but P is not 000 025 050 075 1 00

close to the observed sample values in 2- x1
dimensional space.

« In higher dimensions this type of behaviour is even
harder to detect but we need to be on guard
against extrapolating to extreme values.
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Leverage

o The matrix H = X(X"X)™! X is referred to as the hat matrix.

« The 1-th diagonal element of H, h;;, is called the leverage of the i-th
observation.

« Leverages are always between zero and one,
O<h;=<l1.

» Notice that leverages are not dependent on the response!

o Points with high leverage can exert a lot of influence on the parameter
estimates
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Leverage

On the data from the previous slide:

example_data

## # A tibble: 21 x 3

## id X1 X2
## <int> <dbl> <dbl>
## 1 1 6.982 -1.89
## 2 2 0.297 -0.0679
## 3 3 0.115 0.661
## 4 4 0.163 0.345
## 5 5 0.944 -1.96
## 6 6 0.795 -1.61
## 7 7 0.975 -2.12
## 8 8 0.349 -0.365
## 9 9 0.502 -0.812

## 10 10 6.810 -1.61
## # i 11 more rows
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Leverage

X <- as.matrix(example_data[2:3])

hat_matrix <- x %*% solve(t(x) %*% X) %*% t(x)

example_data %>%

#it
H#it
Tt
##
#it
#it
##
##
#it
#it

<dbl>

diag(hat_matrix)) %>%

-1

mutate(leverage
print(n = 21)
## # A tibble: 21 x 4

id
<int>

1 1T 0.982

2 2 0.297

3 3 0.115

4 4 0.163

5 5 0.944

6 6 0.795

7 7 0.975

8 8 0.349

9 9 0.502

#it

x2 leverage

<dbl>
.89
.0679
.661
.345
.96
.61
.12
.365
.812

O OO 0O

<dbl>
.105
.0422
.118
.0656
.106
.0724
.123
.0230
.0275
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Studentized residuals

« In order to obtain residuals with equal variance, many texts recommend
using the studentised residuals

R;

R =
! O'V 1 —hii

for diagnostic checks.
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Cook's distance

« Cook's distance, D, is another measure of influence:

B-By) Var) (B - B
p

D; =

Rizhii
(1 —hi)2po®

where p is the number of elements in ﬂ,ﬂ;_i] and Y}[_i] are least
squares estimates and the fitted value obtained by fitting the model
ignoring the i-th data point (x;, Y;), respectively.
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Social media marketing

Data collected from advertising experiment to study the impact of three advertising medias (youtube,
facebook and newspaper) on sales.

ul data R
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Extracting values from models in R

o The leverage value, studentised residual and Cook's distance can be easily extracted from a model object
using broom: :augment.

fit <-

## # A tibble:

##
##
##
##
#H
B
##

a b WwN =

.hat is the leverage value

.std.resid is the studentised residual

.cooksd is the Cook's distance

Im(sales ~ youtube * facebook, data =
(out <- broom::augment(fit))

200 x 9

sales youtube facebook .fitted
<dbl>

<dbl>
26.5
12.5
11.2
22.2
15.5

276.
53
20.

182.

217.

4

6

<dbl>
45.4
47 .2
55.1
49.6
13.0

<dbl>
26.0
12.8
11.1
21.2
15.2

.resid
<dbl>
0.496
-0.281
0.0465
1.04
0.316

marketing)

.hat .sigma
<dbl> <dbl>

0.0174 1.13
0.0264 1.13
0.0543 1.14
0.0124 1.13
0.0104 1.13

.cooksd
<dbl>
0.000864
0.000431
0.0000256
0.00268
0.000207

.std.resid

<dbl>
0.442
-0.252

0.0423
0.923
0.280
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Examining the leverage values
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Examining the Cook's distance
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Non-parametric regression



LOESS

o LOESS (LOcal regreSSion) and LOWESS (LOcally

10
WEighted Scatterplot Smoothing) are non- 5
parametric regression methods (LOESS is a > 0
generalisation of LOWESS)
LOESS fits a low order polynomial to a subset of 10 3 " 5 . 3
neighbouring data and can be fitted using loess X
function in R e 0 E (“Tl , 1) (default span=0.75) where A is

a user specified "bandwidth" or "smoothing the degree of the local polynomial (default

parameter” 0. determines how much of the data is degree=2) and n is the number of observations.

used to fit each local polynomial.
e Large o, produce a smoother fit.

« Small o overfits the data with the fitted regression
capturing the random error in the data.
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How span changes the loess fit

span = 0.1

Code inspired by http://varianceexplained.org/files/loess.html




How loess works

Code inspired by http://varianceexplained.org/files/loess.html




US economic time series

This dataset was produced from US economic time series data available from

http://research.stlouisfed.org/fred?2.

ul data R

25

20

10

Median unemployment duration
o

1970 1980 1990 2000 2010
Date
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How to fit LOESS curves in R?
Model fitting

The model can be fitted using the 1oess function where
 the default spanis 0.75 and
 the default local polynomial degree is 2.
fit <- economics %>%

mutate(index = 1:n()) %>%
loess(uempmed ~ index,

data = .,
span = 0.75,
degree = 2)

Showing it on the plot

In ggplot, you can add the loess using geom_smooth with
method = loess and method arguments passed as list:

ggplot(economics, aes(date, uempmed)) +
geom_point() +
geom_smooth(method = loess,
method.args = list(span = 0.75,
degree = 2))

1970 1980 1990 2000 2010
date
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Why non-parametric regression?

 Fitting a line to a scatter plot where noisy data values, sparse data
points or weak inter-relationships interfere with your ability to see a line
of best fit.

« Linear regression where least squares fitting doesn't create a line of
good fit or is too labour intensive to use.

« Data exploration and analysis.

o Recall: In a parametric regression, some type of distribution is assumed
in advance; therefore fitted model can lead to fitting a smooth curve that
misrepresents the data.

 In those cases, hon-parametric regression may be a better choice.

e Can you think of where it might be useful?
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Case study G Bluegills rart 113

Data were collected on length (in mm) and the age (in years) of 78 bluegills captured from Lake Mary,
Minnesota in 1981.

ul data R

Which fit looks better?

(A) . . (B) . .
Linear regression Quadratic regression
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Weisberg (1986) A linear model approach to backcalculation of fish length, Journal of the American Statistical

Association 81 (196) 922-929



Case study G Bluegills rart2s3

« Let's have a look at the residual plots.

e Do you see any patterns on either residual plot?

ul data R
(A), . .
Linear regression
. s
! P
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Weisberg (1986) A linear model approach to backcalculation of fish length, Journal of the American Statistical

Association 81 (196) 922-929



Case study Q Bluegills rartas3

The structure is easily visible with the LOESS curve:

ul data R
(A), . : (B) : :
Linear regression Quadratic regression
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Weisberg (1986) A linear model approach to backcalculation of fish length, Journal of the American Statistical

Association 81 (196) 922-929



Soil resistivity in a field

This data contains measurement of soil resistivity of an agricultural field.
ul data R
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Conditioning plots (Coplots)

library(lattice)

xyplot(resistivity ~ northing | equal.count(easting, 12),

data
type

c("p",

cleveland.soil,

Cc

col = "gray", lwd = 2)

resistivity

ex 0.2

)

"smooth"), col.line = "red",
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See also: https://homepage.divms.uiowa.edu/~luke/classes/STAT4580/threenum.html



Coplots via ggplot2

« Coplots with ggplot2 where the panels have overlapping observations is tricky.

» Below creates a plot for non-overlapping intervals of easting:

ggplot(cleveland.soil, aes(northing, resistivity)) +
geom_point(color = "gray") +
geom_smooth(method = "loess", color = "red", se = FALSE) +
facet_wrap(~ cut_number(easting, 12))
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Take away messages

4 You can use leverage values and Cook's
distance to query possible unusal values in
the data

4 Non-parametric regression, such as LOESS,
can be useful in data exploration and
analysis although parameters must be
carefully chosen not to overfit the data

4 Conditioning plots are useful in
understanding the relationship between pairs
of variables given at particular intervals of
other variables 27/26



Resources and Acknowledgement

These slides were originally created by Dr Emi Tanaka, and modified by Dr Michael Lydeamore.

Cook & Weisberg (1994) "An Introduction to Regression Graphics"

Data coding using tidyverse suite of R packages

Slides constructed with xaringan, remark.js, knitr, and R Markdown.
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