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Revisiting outliers
We de�ned outliers in week 4 as "observations
that are signi�cantly different from the majority"
when studying univariate variables.

There is actually no hard and fast de�nition.

Notice that this makes this de�nition dependent on
the model in question.

We can also de�ne an outlier as a data point
that emanates from a different model than
do the rest of the data.
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Pop Quiz
Would you consider the yellow points below as outliers?



Outlying values
As with simple linear regression the �tted model
should not be used to predict  values for 
combinations that are well away from the set of
observed  values.

This is not always easy to detect!

Here, a point labelled P has  and  coordinates
well within their respective ranges but P is not
close to the observed sample values in 2-
dimensional space.

In higher dimensions this type of behaviour is even
harder to detect but we need to be on guard
against extrapolating to extreme values.
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Leverage

The matrix  is referred to as the hat matrix.

The -th diagonal element of , , is called the leverage of the -th
observation.

Leverages are always between zero and one,

Notice that leverages are not dependent on the response!

Points with high leverage can exert a lot of in�uence on the parameter
estimates
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Leverage
On the data from the previous slide:

example_data

## # A tibble: 21 × 3
##       id    x1      x2
##    <int> <dbl>   <dbl>
##  1     1 0.982 -1.89  
##  2     2 0.297 -0.0679
##  3     3 0.115  0.661 
##  4     4 0.163  0.345 
##  5     5 0.944 -1.96  
##  6     6 0.795 -1.61  
##  7     7 0.975 -2.12  
##  8     8 0.349 -0.365 
##  9     9 0.502 -0.812 
## 10    10 0.810 -1.61  
## # ℹ 11 more rows
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Leverage
x <- as.matrix(example_data[2:3])
hat_matrix <- x %*% solve(t(x) %*% x) %*% t(x)
example_data %>%
  mutate(leverage = diag(hat_matrix)) %>%
  print(n = 21)

## # A tibble: 21 × 4
##       id      x1      x2 leverage
##    <int>   <dbl>   <dbl>    <dbl>
##  1     1 0.982   -1.89     0.105 
##  2     2 0.297   -0.0679   0.0422
##  3     3 0.115    0.661    0.118 
##  4     4 0.163    0.345    0.0656
##  5     5 0.944   -1.96     0.106 
##  6     6 0.795   -1.61     0.0724
##  7     7 0.975   -2.12     0.123 
##  8     8 0.349   -0.365    0.0230
##  9     9 0.502   -0.812    0.0275
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Studentized residuals
In order to obtain residuals with equal variance, many texts recommend
using the studentised residuals

for diagnostic checks.
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Cook's distance
Cook's distance, , is another measure of in�uence:

where  is the number of elements in ,  and  are least
squares estimates and the �tted value obtained by �tting the model
ignoring the -th data point , respectively.

D

Di =

=

( − Var( ( − ) ̂  ̂
[−i] )⊤  ̂)−1  ̂  ̂

[−i]

p

,
R2
i hii

(1 − phii)2 σ ̂2

p  ̂
[−i] Y ̂j[−i]

i ( , )i Yi

9/29



Case study 2  Social media marketing
Data collected from advertising experiment to study the impact of three advertising medias (youtube,
facebook and newspaper) on sales.
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Extracting values from models in R
The leverage value, studentised residual and Cook's distance can be easily extracted from a model object
using broom::augment.

.hat is the leverage value

.std.resid is the studentised residual

.cooksd is the Cook's distance

fit <- lm(sales ~ youtube * facebook, data = marketing)
(out <- broom::augment(fit))

## # A tibble: 200 × 9
##    sales youtube facebook .fitted  .resid    .hat .sigma   .cooksd .std.resid
##    <dbl>   <dbl>    <dbl>   <dbl>   <dbl>   <dbl>  <dbl>     <dbl>      <dbl>
##  1 26.5    276.     45.4    26.0   0.496  0.0174    1.13 0.000864      0.442 
##  2 12.5     53.4    47.2    12.8  -0.281  0.0264    1.13 0.000431     -0.252 
##  3 11.2     20.6    55.1    11.1   0.0465 0.0543    1.14 0.0000256     0.0423
##  4 22.2    182.     49.6    21.2   1.04   0.0124    1.13 0.00268       0.923 
##  5 15.5    217.     13.0    15.2   0.316  0.0104    1.13 0.000207      0.280 
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Examining the leverage values
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Examining the Cook's distance
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Non-parametric regression



LOESS
LOESS (LOcal regrESSion) and LOWESS (LOcally
WEighted Scatterplot Smoothing) are non-
parametric regression methods (LOESS is a
generalisation of LOWESS)

LOESS �ts a low order polynomial to a subset of
neighbouring data and can be �tted using loess
function in R

a user speci�ed "bandwidth" or "smoothing
parameter"  determines how much of the data is
used to �t each local polynomial.

 (default span=0.75) where  is
the degree of the local polynomial (default
degree=2) and  is the number of observations.

Large  produce a smoother �t.

Small  over�ts the data with the �tted regression
capturing the random error in the data.
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How span changes the loess �t

Code inspired by http://varianceexplained.org/�les/loess.html 16/29



How loess works

Code inspired by http://varianceexplained.org/�les/loess.html 17/29



Case study 3  US economic time series
This dataset was produced from US economic time series data available from
http://research.stlouisfed.org/fred2.
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How to �t LOESS curves in R?

Model �tting
The model can be �tted using the loess function where

the default span is 0.75 and

the default local polynomial degree is 2.

fit <- economics %>% 
          mutate(index = 1:n()) %>% 
          loess(uempmed ~ index,
                data = .,
                span = 0.75,
                degree = 2)

Showing it on the plot
In ggplot, you can add the loess using geom_smooth with
method = loess and method arguments passed as list:

ggplot(economics, aes(date, uempmed)) +
  geom_point() + 
  geom_smooth(method = loess,
              method.args = list(span = 0.75,
                                 degree = 2))
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Why non-parametric regression?
Fitting a line to a scatter plot where noisy data values, sparse data
points or weak inter-relationships interfere with your ability to see a line
of best �t.

Linear regression where least squares �tting doesn't create a line of
good �t or is too labour intensive to use.

Data exploration and analysis.

Recall: In a parametric regression, some type of distribution is assumed
in advance; therefore �tted model can lead to �tting a smooth curve that
misrepresents the data.

In those cases, non-parametric regression may be a better choice.

Can you think of where it might be useful?
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Case study 4  Bluegills Part 1/3

Data were collected on length (in mm) and the age (in years) of 78 bluegills captured from Lake Mary,
Minnesota in 1981.

Which �t looks better?

Weisberg (1986) A linear model approach to backcalculation of �sh length, Journal of the American Statistical
Association 81 (196) 922-929 21/29
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Case study 4  Bluegills Part 2/3

Let's have a look at the residual plots.

Do you see any patterns on either residual plot?

Weisberg (1986) A linear model approach to backcalculation of �sh length, Journal of the American Statistical
Association 81 (196) 922-929 22/29

data R



Case study 4  Bluegills Part 3/3

The structure is easily visible with the LOESS curve:

Weisberg (1986) A linear model approach to backcalculation of �sh length, Journal of the American Statistical
Association 81 (196) 922-929 23/29

data R



Case study 5  Soil resistivity in a �eld
This data contains measurement of soil resistivity of an agricultural �eld.

24/29

data R



Conditioning plots (Coplots)
library(lattice)
xyplot(resistivity ~ northing | equal.count(easting, 12),
       data = cleveland.soil, cex = 0.2,  
       type = c("p", "smooth"), col.line = "red", 
       col = "gray", lwd = 2)

See also: https://homepage.divms.uiowa.edu/~luke/classes/STAT4580/threenum.html 25/29



Coplots via ggplot2

Coplots with ggplot2 where the panels have overlapping observations is tricky.

Below creates a plot for non-overlapping intervals of easting:

ggplot(cleveland.soil, aes(northing, resistivity)) +
  geom_point(color = "gray") + 
  geom_smooth(method = "loess", color = "red", se = FALSE) +
  facet_wrap(~ cut_number(easting, 12))
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Take away messages

You can use leverage values and Cook's
distance to query possible unusal values in
the data



Non-parametric regression, such as LOESS,
can be useful in data exploration and
analysis although parameters must be
carefully chosen not to over�t the data



Conditioning plots are useful in
understanding the relationship between pairs
of variables given at particular intervals of
other variables
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Resources and Acknowledgement
These slides were originally created by Dr Emi Tanaka, and modi�ed by Dr Michael Lydeamore.

Cook & Weisberg (1994) "An Introduction to Regression Graphics"

Data coding using tidyverse suite of R packages

Slides constructed with xaringan, remark.js, knitr, and R Markdown.
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