All consultations will be in using zoom. Check Moodle for the links.
There are no lectures or tutorials during the midsemester break.
Week | Lecturer | Slides | Tutorial | Topic | Readings | Assessments |
---|---|---|---|---|---|---|
0 | Di | A: | Course information | |||
1 | Di | A: ; B: | Overview. Why this course? What is EDA? | 50 Years of Data Science |
|
|
2 | Di | A: ; B: | Learning from history | EDA Case Study: Bay area blues | ||
3 | Emi | A: ; B: | Initial data analysis: Model dependent exploration and how it differs from EDA | The initial examination of data | ||
4 | Emi | A: ; B: | Working with a single variable, making transformations, detecting outliers, using robust statistics | Case Study: Behaviours of dairy calves & Unwin (2015) Graphical Data Analysis Ch 3-4 | Assignment 1 due Fri 28 Aug 11:55 PM | |
5 | Di | A: ; B: | Bivariate dependencies and relationships, transformations to linearise | Wilke (2019) Ch 7 Visualising distributions & Unwin (2015) Graphical Data Analysis Ch 5 | ||
6 | Di | A: ; B: | Going beyond two variables, exploring high dimensions | Wilke (2019) Ch 9 Visualising many distributions & Unwin (2015) Graphical Data Analysis Ch 6 | ||
7 | Emi | A: ; B: | Making comparisons between groups and strata | Unwin (2015) Graphical Data Analysis Ch 10 | Assignment 2 due Fri 18 Sep 11:55 PM | |
Midsemester Break (2 weeks) | ||||||
8 | Emi | A: ; B: | Sculpting data using models, checking assumptions, co-dependency and performing diagnostics | Cook & Weisberg (1994) An Introduction to Regression Graphics Ch 6 and Cleveland (1993) Visualising Data Ch 4 | ||
9 | Di | A: ; B: | Exploring data having a space and time context | Reintroducing tsibble: data tools that melt the clock; Unwin (2015) Graphical Data Analysis Ch 11 | ||
10 | Di/Guest | A: | Exploring data having a space and time context | Healy (2018) Data Visualization, Chap 7, Draw maps; Perpinan Lamigueiro (2018) Displaying Time Series, Spatial and Space-Time Data with R | ||
11 | Emi | A: ; B: | Using computational tools to determine whether what is seen in the data can be assumed to apply more broadly | Wickham et al. (2010) Graphical inference for Infovis | ||
12 | Emi/Di | Your turn to present your project work |
|